図形と方程式|三角形の面積について

数学2

図形と方程式 直線

三角形の面積を扱った問題を解いてみよう

次の問題を解いてみましょう。

次の 3

A(4 , 3) , B(1 , 2) , C(3 , 1)

について、次のものを求めよ。

(1)A と直線 BC の距離

(2) ABC の面積

問(1)の解答・解説

問(1)

次の 3

A(4 , 3) , B(1 , 2) , C(3 , 1)

について、次のものを求めよ。

A と直線 BC の距離

例題と問を比較してみましょう。問では、例題(1),(2)が省略されています。

入試レベルになると、必要な作業があるにも関わらず、その作業を省略したような問題が出題されます。小問どうしの関係をしっかりと把握しておきましょう。

点Aと直線BCの距離を求めるには、直線BCの方程式が必要でした。2点を通る直線の方程式に代入して、直線BCの方程式を求めます。

問(1)の解答例 1⃣

直線 BC2

B(1 , 2) , C(3 , 1)

を通るので

(12){x(1)}{3(1)}(y2)=03(x+1)4(y2)=0

よって

3x+4y5=0

図に直線の方程式を追記しておきましょう。

三角形の図(練習問題)
直線BCの方程式を追記する

点Aと直線BCの距離を求めます。点と直線の距離の式に代入します。

問(1)の解答例 2⃣

3x+4y5=0

A と直線 BC の距離を d とすると

d=|3(4)+435|32+42=|5|9+16

よって

d=55=1

これは点 A から BC に下した垂線の長さに等しい。

問(2)の解答・解説

問(2)

次の 3

A(4 , 3) , B(1 , 2) , C(3 , 1)

について、次のものを求めよ。

ABC の面積

三角形の面積を底辺の長さと高さを用いて求めるのであれば、問(1)を解いただけでは足りません。底辺の長さを求めていないからです。

2点間の距離の式に代入して、底辺である線分BCの長さを求めます。

問(2)の解答例 1⃣

線分 BC の長さは 2

B(1 , 2) , C(3 , 1)

間の距離に等しいので

BC={3(1)}2+(12)2=16+9

BC>0 より

BC=5

△ABCの底辺の長さ、高さが分かったので、面積を求めます。

問(2)の解答例 2⃣

BC=5

ABC の面積は

ABC=12BCd=1251

よって

ABC=52

問(2)の別解例

問(1)を無視して、問(2)を単独で解くこともできます。

点Aが原点に重なるように平行移動させると、2点B,Cはそれぞれx軸方向に4、y軸方向に-3だけ平行移動します。

平行移動後の2点B’,C’の座標を用いて、三角形の面積を求めます。

問(2)の別解例

A(4 , 3) が原点 O(0 , 0) に重なるようにABC を平行移動させると

(1+4 , 23) , (3+4 , 13)

より、2B , C はそれぞれ

B(3 , 1) , C(7 , 4)

に平行移動する。

このとき

ABC=OBC

であるので、ABC の面積は

ABC=12|3(4)7(1)|=125

よって

ABC=52

頂点の座標を用いた三角形の面積の式は、かなり便利な式です。時間短縮だけでなく、検算にも使えるので、ぜひともマスターしておきたい式です。

Recommended books

さいごのセンター試験では、共通テストを意識した問題が出題されていました。これまでに見慣れない形式での出題がいくつか見られました。

難易度に関して言えば、これまでのセンター試験とそれほど変わりません。しかし、出題形式に変化があれば、思った以上に難しく感じるものです。実際、2020年の数学の平均点は前年よりも下がっているので、難しく感じた受験生が多かったと考えられます。

傾向の変化に対応するためには、やはり「解き慣れる」ことでしょう。色んなレベルや形式の問題をこなすことが一番の近道です。

◆特長◆
大学入試の基本となる問題を扱った問題集です。問題数は138問です。
問題集は問題、解答という流れが一般的ですが、本問題集はその問題のアプローチの仕方、解答から得られる色々な意味なども「ブラッシュアップ」「ちょっと一言」などを通して解説しています。
問題編冊子44頁、解答編冊子224頁の構成となっています。

◆自分にあったレベルが選べる!◆
  1. 基礎レベル
  2. 共通テストレベル
  3. 私大標準・国公立大レベル
  4. 私大上位・国公立大上位レベル
  5. 私大標準・国公立大レベル
  6. 私大上位・国公立大上位レベル

ここで紹介する問題集は、『大学入試 全レベル問題集 数学』シリーズです。昔からある有名なレベル別問題集です。

3年の1学期までに基礎レベル1を解いて、教科書内容の補完をしてしまいましょう。夏休みになったら、共通テストレベル2で実戦練習をこなすと良いでしょう。9月~10月くらいまでにこの2冊を何度も周回して仕上げれば、秋からの2次対策にスムーズに移行できるでしょう。

なお、新入試に対応するための改訂版が2020年2月に出版されています。改訂版を希望する場合、「新入試対応」とあるものを購入しましょう。

大事なことは、自分に合った教材を徹底的に活用することです。どの教材を選ぶにしても、自分の目で中身を確認し、納得してから購入することが大切です。

さいごにもう一度まとめ

  • 底辺の長さを求めるときには、2点間の距離を利用しよう。
  • 三角形の高さを求めるときには、点と直線の距離を利用しよう。
  • 頂点の1つが原点であれば、残りの2点の座標で三角形の面積が決まる。
  • 頂点がどれも原点にないときは、三角形を平行移動しよう。